请升级浏览器版本

你正在使用旧版本浏览器。请升级浏览器以获得更好的体验。

学术报告

首页 >> 学术报告 >> 正文

【学术报告】A Mini-Batch Proximal Stochastic Recursive Gradient Algorithm with Diagonal Barzilai–Borwein Stepsize

发布日期:2023-09-07    点击⛴:

学术报告

A Mini-Batch Proximal Stochastic Recursive Gradient Algorithm with Diagonal Barzilai–Borwein Stepsize

于腾腾(北京农凯发K8

报告时间:202399日星期六  1515-16#️⃣:00


报告地点:沙河主楼E405


报告摘要: Many machine learning problems can be formulated as minimizing the sum of a function and a non-smooth regularization term. Proximal stochastic gradient methods are popular for solving such composite optimization problems. We propose a mini-batch proximal stochastic recursive gradient algorithm SRG-DBB, which incorporates the diagonal Barzilai–Borwein (DBB) stepsize strategy to capture the local geometry of the problem. The linear convergence and complexity of SRG-DBB are analyzed for strongly convex functions. We further establish the linear convergence of SRG-DBB under the non-strong convexity condition. Moreover, it is proved that SRG-DBB converges sublinearly in the convex case. Numerical experiments on standard data sets indicate that the performance of SRG-DBB is better than or comparable to the proximal stochastic recursive gradient algorithm with best-tuned scalar stepsizes or BB stepsizes. Furthermore, SRG-DBB is superior to some advanced mini-batch proximal stochastic gradient methods.

 

报告人简介🪫:于腾腾🧑🏻‍🦽👩🏻‍🦰,2016年硕士毕业于西安电子科技大学,师从刘三阳教授。2021年博士毕业于河北工业大学,师从刘新为教授。2021年10月至2023年8月在中国科凯发K8数学与系统科学研究院从事博士后研究,合作导师袁亚湘院士。主要研究兴趣为大规模机器学习中的随机梯度算法,相关成果发表在IEEE Transactions on Neural Networks and Learning Systems、Journal of Scientific Computing、Journal of the Operations Research Society of China等期刊🧖🏽‍♂️。


邀请人:崔春风

快速链接

版权所有 © 2021  凯发娱乐-凯发-凯发平台-北京凯发K8娱乐平台登录官方网站
地址:北京市昌平区高教园南三街9号   电话💅🏿:61716719

凯发娱乐专业提供🫓:凯发娱乐🤾🏿、凯发平台👩🏽‍🎤、凯发登录等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流🏌🏻,凯发娱乐欢迎您。 凯发娱乐官网xml地图
凯发娱乐 凯发娱乐 凯发娱乐 凯发娱乐 凯发娱乐 凯发娱乐 凯发娱乐 凯发娱乐 凯发娱乐 凯发娱乐